Keramamide A, a Novel Peptide from the Okinawan Marine Sponge Theonella sp.

Jun'ichi Kobayashi ${ }^{\text {* }, a}$ Masaaki Sato ${ }^{a}$, Masami Ishibashi ${ }^{\text {a }}$, Hideyuki Shigemori ${ }^{a}$, Takemichi Nakamura ${ }^{\text {b }}$ and Yasushi Óhizumi ${ }^{\text {c }}$
${ }^{a}$ Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060, Japan
${ }^{\text {b }}$ Analytical and Metabolic Research Laboratory, Sankyo Co., Ltd., Shinagawa, Tokyo 140, Japan
${ }^{\text {c }}$ Pharmaceutical Institute, Tohoku University, Sendai 980, Japan

A novel peptide, keramamide A 1, has been isolated from the Okinawan marine sponge Theonella sp . and the structure established as a unique hexapeptide containing a hitherto unknown amino acid 6-chloro-5-hydroxy- N-methyltryptophan, and possessing an unusual ureido bond. The structural assignment was made on the basis of spectroscopic results (two-dimensional NMR: ${ }^{1} \mathrm{H}-$ ${ }^{1} \mathrm{H}$ COSY, NOESY, ROESY, COLOC, HMQC, HMBC and HOHAHA; and FAB MS/MS).

Marine sponges of the genus Theonella have been shown to be a rich source of unique secondary metabolites with intriguing structures and interesting biological activities. ${ }^{1-3}$ During our continuing studies on bioactive substances from Okinawan marine organisms, ${ }^{4}$ we recently investigated extracts of a sponge belonging to the genus Theonella and isolated the novel peptide, keramamide A 1. Here we describe the isolation and structure elucidation of $\mathbf{1}$. Keramamide A 1 consists of six amino acid residues, one of which, 6-chloro-5-hydroxy- N methyltryptophan (MeCht), was hitherto unknown; it also contains an unusual ureido bond consisting of the $\alpha-\mathrm{NH}$ of the lysine and the $\alpha-\mathrm{NH}$ of the phenylalanine residues. The structure was fully established on the basis of extensive spectroscopic analyses including several types of two-dimensional NMR studies as well as FAB MS/MS experiments.

The sponge, \dagger collected off Kerama Islands, Okinawa, was extracted with methanol-toluene (3:1). The toluene- and chloroform-soluble fractions of the extract were subjected to flash chromatography on a silica gel column with methanolchloroform (50:50) followed by gel filtration on Sephadex LH20 with methanol and reversed-phase HPLC on ODS (methanol-water-trifluoroacetic acid, 80:20:0.1) to give keramamide $\mathrm{A} \ddagger \mathbf{1}(0.001 \%$ yield, wet weight).

Keramamide A 1 was negative to ninhydrin but positive to Fast Red B salt, ${ }^{5}$ indicating the absence of an N-terminus and the presence of a pyrrole chromophore. The molecular formula was determined as $\mathrm{C}_{49} \mathrm{H}_{63} \mathrm{ClN}_{8} \mathrm{O}_{9}$ by HRFABMS [positive, $m / z 943.4485(\mathrm{M}+\mathrm{H})^{+}$for $\mathrm{C}_{49} \mathrm{H}_{64} \mathrm{ClN}_{8} \mathrm{O}_{9}, \Delta 0.0 \mathrm{mmu}$]. A standard amino acid analysis of the acid hydrolysate of 1 suggested the presence of leucine (Leu), phenylalanine (Phe),
and lysine (Lys) residues. The presence of a carboxy group was inferred from the broad IR absorption at $3600-2400 \mathrm{~cm}^{-1}$ and a broad proton signal at $\delta_{\mathrm{H}} 12.7$ in the ${ }^{1} \mathrm{H}$ NMR spectrum of 1 . Treatment of 1 with diazomethane afforded a methyl ester 2 in which the 5-hydroxy group in MeCht had been methylated. § An extensive NMR analysis on 1 (see Table 1) including ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY, HOHAHA, ${ }^{6}{ }^{\text {HMQC, }}{ }^{7}$ COLOC, ${ }^{8}$ and HMBC ${ }^{9}$ spectra recorded in $\left[{ }^{2} \mathrm{H}_{6}\right]$-DMSO showed the presence of the spin systems of six amino acid residues, namely, two Leu, two Phe, one Lys and previously unknown MeCht. For the MeCht residue, the 2,5,6-trisubstituted indole portion was clearly supported by the HMBC correlations and the ${ }^{13} \mathrm{C}$ chemical shifts of the indole ring carbons were consistent with calculated values. ${ }^{10}$ Fairly highfield resonances for one of the β-protons ($\delta_{\mathrm{H}}-0.45$) and methyl protons ($\delta_{\mathrm{H}} 0.27$ and 0.44) of one leucine residue (Leu ${ }^{2}$) were observed. These large shieldings were accounted for by diamagnetic anisotropy due to the ring current effects ${ }^{11}$ of the indole nucleus and this suggested that the Leu ${ }^{2}$ residue adjoined the MeCht residue. Evidence for the amino acid sequence of 1 was provided by NOESY, ROESY, ${ }^{12}$ COLOC and HMBC correlations and established that the sequence for the cyclic pentapeptide moiety was cyclo(Phe ${ }^{1}-\mathrm{MeCht}^{-L e u^{2}}{ }^{-} \mathrm{Leu}^{1}-\mathrm{Lys}$). If The remaining Phe ${ }^{2}$ residue was shown to be attached to the $\alpha-$ NH of Lys through an unusual ureido linkage by the NOESY correlation of $\mathrm{NH}\left(\mathrm{Phe}^{2}\right) / \alpha-\mathrm{NH}($ Lys $)$ as well as the HMBC cross peaks for $\mathrm{NH}\left(\mathrm{Phe}^{2}\right) / \mathrm{CO}$ (ureido; $\delta_{\mathrm{C}} 156.8$), $\alpha-\mathrm{H}\left(\mathrm{Phe}^{2}\right) / \mathrm{CO}$ (ureido), and $\alpha-$ $\mathrm{NH}(\mathrm{Lys}) / \mathrm{CO}$ (ureido). It was established that the free carboxy group was present in the branched Phe^{2} group. The proposed structure 1 for keramamide A based on the above NMR data was wholly supported by FAB MS/MS ${ }^{13}$ evidence. The daughter ions obtained by the collisionally activated dissociation (CAD) spectra of the molecular protonated ions ($\mathrm{m} / \mathrm{z} 943$ and 945) are presented in Table 2. The presence or not of a chlorine atom in a particular daughter ion was established

[^0]Table $1 \quad{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data for keramamide A 1 recorded in $\left[{ }^{2} \mathrm{H}_{6}\right]$-DMSO

by comparison of the CAD spectra of the two parent ions (m / z 943 with ${ }^{35} \mathrm{Cl}$ and $m / z 945$ with ${ }^{37} \mathrm{Cl}$). In this way the presence of the ureido bond $(m / z 778 / 780 \mathbf{b} \text { and } 752 / 754 \mathbf{c})^{*}$ and the amino acid sequence in keramamide A 1 were firmly established. The

[^1]Table 2 FAB MS/MS data for keramamide A 1

m / z^{a}	m / z^{b}	Assignment of daughter ions ${ }^{c, d}$
943	945	M + H (parent ion)
925	927	M + H-H2O (hydantoin ion); a
830	832	MeCht-Phe-Lys(-urPhe)-Leu + H
778	780	Leu-Leu-MeCht-Phe-Lys-CO(ureido); b
752	754	Leu-Leu-MeCht-Phe-Lys + 2 H; c
580	580	Phe-Lys(-urPhe)-Leu + H
477	479	Leu-Leu-MeCht + H
467	467	Phe-Lys(-urPhe) + H
439	439	Phe-Lys(-urPhe) - CO + H
433	433	Lys(-urPhe)-Leu + H
398	400	MeCht-Phe + H
320	320	Lys(-urPhe) + H
251	253	MeCht + H
223	225	MeCht - CO + H
180	182	MeCht - COCHNMe

${ }^{a}$ For ${ }^{35} \mathrm{Cl}$ parent ion. ${ }^{b}$ For ${ }^{37} \mathrm{Cl}$ parent ion. ${ }^{\text {c }}$ The amide bond cleavages are assumed to occur between NH (or NMe) and CO (the B-type fragmentation). ${ }^{17 d}$ 'urPhe' denotes phenylalanine attached through an ureido bond.

chiral GC analysis (Chirasil- Val^{\circledR}, Alltech) of the N -trifluoroacetyl/methyl ester derivatives of the hydrolysate of 1 clarified that all of the Leu, Phe and Lys residues in 1 were L-forms. \dagger The structure of keramamide A was thus established as $\mathbf{1}$. Of the six amide-NH protons, $\mathrm{NH}\left(\mathrm{Phe}^{1}\right), \varepsilon-\mathrm{NH}($ Lys $)$ and $\mathrm{NH}\left(\mathrm{Leu}^{2}\right)$ showed a very slow deuterium-exchange rate. It appears likely from model considerations that the $\mathrm{NH}\left(\mathrm{Phe}^{1}\right)$ and ε - NH (Lys) are hydrogen-bonded with oxygen atoms of the amide carbonyls of Leu ${ }^{2}$ and Lys, respectively, and the $\mathrm{NH}\left(\mathrm{Leu}^{2}\right)$ is sterically hindered by hydrophobic alkyl side chains of the two $\mathrm{Leu}\left(\mathrm{Leu}^{1}\right.$ and Leu^{2}) residues.
Keramamide A 1 is a unique peptide with a modified tryptophan residue (MeCht) and an ureido bond first isolated from marine organisms. This peptide may be produced by any symbiotic microorganism in the sponge Theonella sp. ${ }^{14}$ Keramamide A $1 \ddagger$ exhibited inhibitory activity against sarcoplasmic reticulum Ca^{2+}-ATPase ${ }^{15,16}\left(\mathrm{IC}_{50} 3 \times 10^{-4} \mathrm{~mol}\right.$ dm^{-3}).

Acknowledgements

We thank Mr. Z. Nagahama for his help in collecting the sponge and Professor T. Sasaki, Kanazawa University, for cytotoxicity tests.

References

1 For peptides, see: N. Fusetani, S. Matsunaga, H. Matsumoto and Y. Takebayashi, J. Am. Chem. Soc., 1990, 112, 7053 and references cited therein.
2 For macrolides or polyethers, see: I. Kitagawa, M. Kobayashi, T. Katori, M. Yamashita, J. Tanaka, M. Doi and T. Ishida, J. Am. Chem. Soc., 1990, 112, 3710 and references cited therein.
3 Sesquiterpenoids or pyridine alkaloids were also obtained from Theonella sp.: (a) H. Nakamura, J. Kobayashi and Y. Hirata, Tetrahedron Lett., 1984, 25, 5401; (b) I. Kitagawa, N. Yoshioka, C. Kamba, M. Yoshikawa and Y. Hamamoto, Chem. Pharm. Bull., 1987, 35, 928; (c) J. Kobayashi, T. Murayama, Y. Ohizumi, T. Sasaki, T. Ohata and S. Nozoe, Tetrahedron Lett., 1989, 30, 4833.

4 (a) J. Kobayashi, T. Murayama, S. Kosuge, F. Kanda, M. Ishibashi, H. Kobayashi, Y. Ohizumi, T. Ohta, S. Nozoe and T. Sasaki, J. Chem. Soc., Perkin Trans. 1, 1990, 3301; (b) J. Kobayashi, T. Murayama, M. Ishibashi, S. Kosuge, M. Takamatsu, Y. Ohizumi, H. Kobayashi, T. Ohta, S. Nozoe and T. Sasaki, Tetrahedron, 1990, 46, 7699; (c) Y. Kikuchi, M. Ishibashi, T. Sasaki and J. Kobayashi, Tetrahedron Lett., 1991, 32, 797; (d) J. Kobayashi, J.-F. Cheng, S. Yamamura, M. Ishibashi, Tetrahedron Lett., 1991, 32, 1227; (e) M. Tsuda. M. Ishibashi, K. Agemi, T. Sasaki and J. Kobayashi, Tetrahedron, 1991, 47, 2181; (f) J. Kobayashi, F. Kanda, M. Ishibashi and H. Shigemori, J. Org. Chem., 1991, 56, 4574.
5 G. Cimino, S. De Stefano, L. Minale and G. Sodano, Comp. Biochem. Physiol., 1975, 50B, 279.
6 D. G. Davis and A. Bax, J. Am. Chem. Soc., 1985, 107, 2820.
7 A. Bax and S. Subramanian, J. Magn. Reson., 1986, 67, 565.
8 H. Kessler, W. Bermel and C. Griesinger, J. Am. Chem. Soc., 1985, 107, 1083.
9 A. Bax and M. F. Summers, J. Am. Chem. Soc., 1986, 108, 2093.
10 E. Breitmaier and W. Voelter, Carbon-13 NMR Spectroscopy, VCH, Weinheim, 1987, p. 319.

11 R. M. Silverstein, G. C. Bassler, T. C. Morill, Spectrometric Identification of Organic Compounds, John Wiley, New York, 1981, p. 188.

12 A. A. Bothner-By, R. L. Stephens, J. Lee, C. D. Warren and R. W. Jeanloz, J. Am. Chem. Soc., 1984, 106, 811.
13 F. W. McLafferty, Science, 1981, 214, 280.
14 F. Isono, M. Inukai, S. Takahashi, T. Haneishi, T. Kinoshita and H. Kuwano, J. Antibiot., 1989, 42, 667.
15 M. Kobayashi, N. Shoji and Y. Ohizumi, Biochim. Biophys. Acta, 1987, 903, 96.
16 J. Kobayashi, M. Ishibashi, H. Nakamura, Y. Hirata, T. Yamasu, T. Sasaki and Y. Ohizumi, Experientia, 1988, 44, 800.
17 M. Isobe, D. Uyakal, K. Liu and T. Goto, Agric. Biol. Chem., 1990, 54, 1651.

Paper 1/02730A
Received 7th June 1991
Accepted 31st July 1991

[^0]: \dagger The brown sponge Theonella sp . used in this study was characterized by a yellow inner body.
 \ddagger 1: $[\alpha]_{\mathrm{D}}{ }^{20}-190(c 0.03, \mathrm{MeOH}) ; v_{\text {max }} /(\mathrm{KBr}) / \mathrm{cm}^{-1} 3250,3050,1715$, 1640,1540 and 1020; $\lambda_{\text {max }}(\mathrm{MeOH}) / \mathrm{nm} 213$ ($\varepsilon 26000$), 287 (5600), 303 (5200) and 315 sh .
 § 2: $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 3.48$ and 3.93 (each $3 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{MeO}$); FABMS m/z 939 $\left(\mathrm{M}^{+}+\mathrm{H}-\mathrm{MeOH}\right.$; hydantoin ion analogous to \mathbf{a}).
 T The following sequential cross peaks were observed: [NOESY and/or ROESY (H/H)] NH(Phe $\left.{ }^{1}\right) / \alpha-H(M e C h t), ~ \alpha-H\left(\right.$ Phe $\left.^{1}\right) / \alpha-H(M e C h t), ~ \alpha-$ $\mathrm{H}(\mathrm{MeCht}) / \alpha-\mathrm{H}\left(\mathrm{Leu}^{2}\right), \quad \mathrm{NH}\left(\mathrm{Leu}^{2}\right) / \alpha-\mathrm{H}\left(\mathrm{Leu}^{1}\right), \quad \mathrm{NH}\left(\mathrm{Leu}^{1}\right) / \beta-\mathrm{H}_{2}(\mathrm{Lys})$, $\mathrm{NH}\left(\mathrm{Leu}^{1}\right) / \alpha-\mathrm{NH}(\mathrm{Lys}), \varepsilon-\mathrm{NH}(\mathrm{Lys}) / \alpha-\mathrm{NH}\left(\mathrm{Phe}^{1}\right)$ and $\varepsilon-\mathrm{NH}(\mathrm{Lys}) / \alpha-$ $\mathrm{H}\left(\mathrm{Phe}^{1}\right)$; [HMBC and/or COLOC (H/C)] NH(Phe $\left.{ }^{1}\right) / \mathrm{CO}(\mathrm{MeCht})$, $\mathrm{NMe}(\mathrm{MeCht}) / \mathrm{CO}\left(\mathrm{Leu}^{2}\right), \mathrm{NH}\left(\mathrm{Leu}^{2}\right) / \mathrm{CO}\left(\mathrm{Leu}^{1}\right), \mathrm{NH}\left(\mathrm{Leu}^{1}\right) / \mathrm{CO}(\mathrm{Lys})$ and $\varepsilon-\mathrm{NH}(\mathrm{Lys}) / \mathrm{CO}\left(\mathrm{Phe}^{1}\right)$.

[^1]: * The hydantoin ion a also corroborated the presence of the ureido bond. ${ }^{14}$
 \dagger The absolute configuration of the MeCht residue remains undefined.
 \ddagger Keramamide A 1 exhibited no cytotoxicity against murine lymphoma
 L1210 and human epidermoid carcinoma KB cells in vitro at $10 \mu \mathrm{~g} / \mathrm{mL}$.

