Keramamide A, a Novel Peptide from the Okinawan Marine Sponge *Theonella* sp.

Jun'ichi Kobayashi ^{*,}^a Masaaki Sato^a, Masami Ishibashi^a, Hideyuki Shigemori^a, Takemichi Nakamura^b and Yasushi Ohizumi^c

^a Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060, Japan

^b Analytical and Metabolic Research Laboratory, Sankyo Co., Ltd., Shinagawa, Tokyo 140, Japan

^c Pharmaceutical Institute, Tohoku University, Sendai 980, Japan

A novel peptide, keramamide A 1, has been isolated from the Okinawan marine sponge *Theonella* sp. and the structure established as a unique hexapeptide containing a hitherto unknown amino acid 6-chloro-5-hydroxy-*N*-methyltryptophan, and possessing an unusual ureido bond. The structural assignment was made on the basis of spectroscopic results (two-dimensional NMR: ¹H- ¹H COSY, NOESY, ROESY, COLOC, HMQC, HMBC and HOHAHA; and FAB MS/MS).

Marine sponges of the genus *Theonella* have been shown to be a rich source of unique secondary metabolites with intriguing structures and interesting biological activities.¹⁻³ During our continuing studies on bioactive substances from Okinawan marine organisms,⁴ we recently investigated extracts of a sponge belonging to the genus *Theonella* and isolated the novel peptide, keramamide A 1. Here we describe the isolation and structure elucidation of 1. Keramamide A 1 consists of six amino acid residues, one of which, 6-chloro-5-hydroxy-*N*methyltryptophan (MeCht), was hitherto unknown; it also contains an unusual ureido bond consisting of the α -NH of the lysine and the α -NH of the phenylalanine residues. The structure was fully established on the basis of extensive spectroscopic analyses including several types of two-dimensional NMR studies as well as FAB MS/MS experiments.

The sponge,† collected off Kerama Islands, Okinawa, was extracted with methanol-toluene (3:1). The toluene- and chloroform-soluble fractions of the extract were subjected to flash chromatography on a silica gel column with methanol-chloroform (50:50) followed by gel filtration on Sephadex LH-20 with methanol and reversed-phase HPLC on ODS (methanol-water-trifluoroacetic acid, 80:20:0.1) to give keramamide A‡ 1 (0.001% yield, wet weight).

Keramamide A 1 was negative to ninhydrin but positive to Fast Red B salt,⁵ indicating the absence of an *N*-terminus and the presence of a pyrrole chromophore. The molecular formula was determined as $C_{49}H_{63}ClN_8O_9$ by HRFABMS [positive, m/z 943.4485 (M + H)⁺ for $C_{49}H_{64}ClN_8O_9$, Δ 0.0 mmu]. A standard amino acid analysis of the acid hydrolysate of 1 suggested the presence of leucine (Leu), phenylalanine (Phe),

and lysine (Lys) residues. The presence of a carboxy group was inferred from the broad IR absorption at 3600-2400 cm⁻¹ and a broad proton signal at $\delta_{\rm H}$ 12.7 in the ¹H NMR spectrum of 1. Treatment of 1 with diazomethane afforded a methyl ester 2 in which the 5-hydroxy group in MeCht had been methylated.§ An extensive NMR analysis on 1 (see Table 1) including ¹H-¹H COSY, HOHAHA,⁶ HMQC,⁷ COLOC,⁸ and HMBC⁹ spectra recorded in $[^{2}H_{6}]$ -DMSO showed the presence of the spin systems of six amino acid residues, namely, two Leu, two Phe. one Lys and previously unknown MeCht. For the MeCht residue, the 2,5,6-trisubstituted indole portion was clearly supported by the HMBC correlations and the ¹³C chemical shifts of the indole ring carbons were consistent with calculated values.¹⁰ Fairly highfield resonances for one of the β -protons $(\delta_{\rm H}$ -0.45) and methyl protons $(\delta_{\rm H} 0.27 \text{ and } 0.44)$ of one leucine residue (Leu²) were observed. These large shieldings were accounted for by diamagnetic anisotropy due to the ring current effects¹¹ of the indole nucleus and this suggested that the Leu² residue adjoined the MeCht residue. Evidence for the amino acid sequence of 1 was provided by NOESY, ROESY,¹² COLOC and HMBC correlations and established that the sequence for the cyclic pentapeptide moiety was cyclo- $(Phe^1-MeCht-Leu^2-Leu^1-Lys)$.¶ The remaining Phe^2 residue was shown to be attached to the α -NH of Lys through an unusual ureido linkage by the NOESY correlation of $NH(Phe^2)/\alpha$ -NH(Lys) as well as the HMBC cross peaks for NH(Phe²)/CO(ureido; $\delta_{\rm C}$ 156.8), α -H(Phe²)/CO(ureido), and α -NH(Lys)/CO(ureido). It was established that the free carboxy group was present in the branched Phe² group. The proposed structure 1 for keramamide A based on the above NMR data was wholly supported by FAB MS/MS¹³ evidence. The daughter ions obtained by the collisionally activated dissociation (CAD) spectra of the molecular protonated ions (m/z 943 and 945) are presented in Table 2. The presence or not of a chlorine atom in a particular daughter ion was established

[†] The brown sponge *Theonella* sp. used in this study was characterized by a yellow inner body.

 $[\]ddagger$ 1: $[\alpha]_{D}^{20}$ – 190 (c 0.03, MeOH); $\nu_{max}/(KBr)/cm^{-1}$ 3250, 3050, 1715, 1640, 1540 and 1020; $\lambda_{max}(MeOH)/nm$ 213 (ε 26 000), 287 (5600), 303 (5200) and 315sh.

^{§ 2:} $\delta_{H}(CDCl_3)$ 3.48 and 3.93 (each 3 H, s, 2 × MeO); FABMS m/z 939 (M⁺ + H – MeOH; hydantoin ion analogous to **a**).

 $[\]P$ The following sequential cross peaks were observed: [NOESY and/or ROESY (H/H)] NH(Phe¹)/\alpha-H(MeCht), α -H(Phe¹)/\alpha-H(MeCht), α -H(MeCht)/\alpha-H(Leu²), NH(Leu²)/\alpha-H(Leu¹), NH(Leu¹)/\beta-H₂(Lys), NH(Leu¹)/\alpha-NH(Lys), ϵ -NH(Lys)/ α -NH(Phe¹) and ϵ -NH(Lys)/ α -H(Phe¹); [HMBC and/or COLOC (H/C)] NH(Phe¹)/CO(MeCht), NMe(MeCht)/CO(Leu²), NH(Leu²)/CO(Leu¹), NH(Leu¹)/CO(Lys) and ϵ -NH(Lys)/CO(Phe¹).

Table 1 ¹H and ¹³C NMR spectral data for keramamide A 1 recorded in $[^{2}H_{6}]$ -DMSO

Position		¹ H	J/H	z	¹³ C	
Phe ¹	СО				170.8	s
	NH	8.69	d	8.8		
	α	4.52	m		54.7	d
	β	2.73	dd	14.2, 5.5	37.8	t
		3.36	dd	14.2, 3.2		
	1				138.2	s
	2,6	7.08 (2 H)	d	6.8	128.8	d
	3,5	7.15-7.30	m		128.2	d
	4	7.15-7.30	m		126.0	s
MeCht	CO				169.5	s
	NMe	1.94 (3 H)	s		27.5	q
	α	4.69	m		60.9	d
	β	2.76	dd	14.5, 5.5	22.2	t
		3.07	dd	14.5, 2.8		
	1-NH	10.65	d	2.0		
	2	6.89	d	2.0	125.0	d
	3				108.9	s
	4	6.99	s		103.7	d
	5				145.8	s
	6				115.9	s
	7	7.28	s		111.7	d
	8		-		130.3	s
	9				126.7	s
	5-OH	9.13	br s			
Leu ²	CO				172.2	s
	NH	8.49	d	5.4		-
	α	4.25	m		47.1	d
	ß	-0.45	t	11.2	37.3	t
	F	0.97	m			
	γ	1.40	m		23.2	d
	м́е	0.44 (3 H)	d	6.6	22.4	a
	Me'	0.27 (3 H)	d	6.6	19.7	a
Leu ¹	CO		-		173.2	s
Lua	NH	6.89	d	2.4		-
	a	4.07	m		50.8	d
	ŝ	1.51 (2 H)	m		39.5	t
	ρ γ	1.71	m		23.8	d
	Me	0.89 (3 H)	d	6.6	22.8	a
	Me′	0.84 (3 H)	d	6.6	21.7	a
Lvs	CO				172.0	s
295	α-NH	6.39	d	7.6		
	α	3.88	m		54.5	d
	β	1.40 (2 H)	m		31.8	t
	γ	1.51 (2 H)	m		20.2	t
	δ	1.40 (2 H)	m		28.2	t
	8	2.85	m		38.2	t
	•	3.60	m			
	ε-NH	7.40	dd	8.1. 2.7		
Phe ²	CO ₂ H			- ,	173.5	s
	CO ₂ H	12.7	br s			
	NH	6.22	d	8.3		
	α	4 36	m	0.0	53.7	d
	ŝ	2.87	dd	13976	37.6	t
	ч	3.00	dd	139 54	27.0	•
	1	5.00	uu	10.0, 0.4	1373	s
	26	7 15-7 30	m		120.1	d
	2,0	7 15-7 30	m		128.1	d
	4	7 15-7 30	m		126.3	s
	r CO(ureide)	1.15 1.50			156.8	s
					100.0	5

by comparison of the CAD spectra of the two parent ions $(m/z 943 \text{ with } {}^{35}\text{Cl} \text{ and } m/z 945 \text{ with } {}^{37}\text{Cl})$. In this way the presence of the ureido bond $(m/z 778/780 \text{ b} \text{ and } 752/754 \text{ c})^*$ and the amino acid sequence in keramamide A 1 were firmly established. The

Table 2 FAB MS/MS data for keramamide A 1

m/z^a	<i>m/z</i> ^b	Assignment of daughter ions ^{c,d}	
943	945	M + H (parent ion)	
925	927	$M + H - H_2 O$ (hydantoin ion); a	
830	832	MeCht-Phe-Lys(-urPhe)-Leu + H	
778	780	Leu-Leu-MeCht-Phe-Lys-CO(ureido); b	
752	754	Leu-Leu-MeCht-Phe-Lys + 2 H; c	
580	580	Phe-Lys(-urPhe)-Leu $+$ H	
477	479	Leu-Leu-MeCht + H	
467	467	Phe-Lys(-urPhe) + H	
439	439	Phe-Lys(-urPhe) - CO + H	
433	433	Lys(-urPhe)-Leu + H	
398	400	MeCht-Phe + H	
320	320	Lys(-urPhe) + H	
251	253	MeCht + H	
223	225	MeCht - CO + H	
180	182	MeCht – COCHNMe	

^{*a*} For ³⁵Cl parent ion. ^{*b*} For ³⁷Cl parent ion. ^{*c*} The amide bond cleavages are assumed to occur between NH (or NMe) and CO (the B-type fragmentation).^{17 *d*} 'urPhe' denotes phenylalanine attached through an ureido bond.

chiral GC analysis (Chirasil-Val[®], Alltech) of the *N*-trifluoroacetyl/methyl ester derivatives of the hydrolysate of 1 clarified that all of the Leu, Phe and Lys residues in 1 were L-forms.[†] The structure of keramamide A was thus established as 1. Of the six amide-NH protons, NH(Phe¹), ε -NH(Lys) and NH(Leu²) showed a very slow deuterium-exchange rate. It appears likely from model considerations that the NH(Phe¹) and ε -NH(Lys) are hydrogen-bonded with oxygen atoms of the amide carbonyls of Leu² and Lys, respectively, and the NH(Leu²) is sterically hindered by hydrophobic alkyl side chains of the two Leu (Leu¹ and Leu²) residues.

Keramamide A 1 is a unique peptide with a modified tryptophan residue (MeCht) and an ureido bond first isolated from marine organisms. This peptide may be produced by any symbiotic microorganism in the sponge *Theonella* sp.¹⁴ Keramamide A 1[‡] exhibited inhibitory activity against sarcoplasmic reticulum Ca²⁺-ATPase^{15,16} (IC₅₀ 3 × 10⁻⁴ mol dm⁻³).

Acknowledgements

We thank Mr. Z. Nagahama for his help in collecting the sponge and Professor T. Sasaki, Kanazawa University, for cytotoxicity tests.

References

- 1 For peptides, see: N. Fusetani, S. Matsunaga, H. Matsumoto and Y. Takebayashi, J. Am. Chem. Soc., 1990, **112**, 7053 and references cited therein.
- 2 For macrolides or polyethers, see: I. Kitagawa, M. Kobayashi, T. Katori, M. Yamashita, J. Tanaka, M. Doi and T. Ishida, J. Am. Chem. Soc., 1990, **112**, 3710 and references cited therein.
- 3 Sesquiterpenoids or pyridine alkaloids were also obtained from *Theonella* sp.: (a) H. Nakamura, J. Kobayashi and Y. Hirata, *Tetrahedron Lett.*, 1984, **25**, 5401; (b) I. Kitagawa, N. Yoshioka, C. Kamba, M. Yoshikawa and Y. Hamamoto, *Chem. Pharm. Bull.*, 1987, **35**, 928; (c) J. Kobayashi, T. Murayama, Y. Ohizumi, T. Sasaki, T. Ohata and S. Nozoe, *Tetrahedron Lett.*, 1989, **30**, 4833.

^{*} The hydantoin ion \mathbf{a} also corroborated the presence of the ureido bond.¹⁴

[†] The absolute configuration of the MeCht residue remains undefined. ‡ Keramamide A 1 exhibited no cytotoxicity against murine lymphoma L1210 and human epidermoid carcinoma KB cells in vitro at 10 μg/mL.

- 4 (a) J. Kobayashi, T. Murayama, S. Kosuge, F. Kanda, M. Ishibashi, H. Kobayashi, Y. Ohizumi, T. Ohta, S. Nozoe and T. Sasaki, J. Chem. Soc., Perkin Trans. 1, 1990, 3301; (b) J. Kobayashi, T. Murayama, M. Ishibashi, S. Kosuge, M. Takamatsu, Y. Ohizumi, H. Kobayashi, T. Ohta, S. Nozoe and T. Sasaki, *Tetrahedron*, 1990, 46, 7699; (c) Y. Kikuchi, M. Ishibashi, T. Sasaki and J. Kobayashi, Tetrahedron Lett., 1991, 32, 797; (d) J. Kobayashi, J.-F. Cheng, S. Yamamura, M. Ishibashi, Tetrahedron Lett., 1991, 32, 1227; (e) M. Tsuda, M. Ishibashi, K. Agemi, T. Sasaki and J. Kobayashi, Tetrahedron, 1991, 47, 2181; (f) J. Kobayashi, F. Kanda, M. Ishibashi and H. Shigemori, J. Org. Chem., 1991, 56, 4574.
- 5 G. Cimino, S. De Stefano, L. Minale and G. Sodano, Comp. Biochem. Physiol., 1975, 50B, 279.
- 6 D. G. Davis and A. Bax, J. Am. Chem. Soc., 1985, 107, 2820.
- 7 A. Bax and S. Subramanian, J. Magn. Reson., 1986, 67, 565.
- 8 H. Kessler, W. Bermel and C. Griesinger, J. Am. Chem. Soc., 1985, 107, 1083.
- 9 A. Bax and M. F. Summers, J. Am. Chem. Soc., 1986, 108, 2093.
- 10 E. Breitmaier and W. Voelter, Carbon-13 NMR Spectroscopy, VCH, Weinheim, 1987, p. 319.

- 12 A. A. Bothner-By, R. L. Stephens, J. Lee, C. D. Warren and R. W. Jeanloz, J. Am. Chem. Soc., 1984, **106**, 811. 13 F. W. McLafferty, Science, 1981, **214**, 280.
- 14 F. Isono, M. Inukai, S. Takahashi, T. Haneishi, T. Kinoshita and H. Kuwano, J. Antibiot., 1989, 42, 667.
- 15 M. Kobayashi, N. Shoji and Y. Ohizumi, Biochim. Biophys. Acta, 1987, 903, 96.
- 16 J. Kobayashi, M. Ishibashi, H. Nakamura, Y. Hirata, T. Yamasu, T. Sasaki and Y. Ohizumi, *Experientia*, 1988, **44**, 800. 17 M. Isobe, D. Uyakal, K. Liu and T. Goto, *Agric. Biol. Chem.*, 1990,
- 54, 1651.

Paper 1/02730A Received 7th June 1991 Accepted 31st July 1991